Wingsuit Studio

Introducing Wingsuit Studio, a revolutionary — see, I do nothing but revolutionary stuff Wink — wingsuit flight analysis and modeling program.

Wingsuit Studio is expandable with custom “modules” designed to do specific task. They are based on Wingsuit Studio’s framework which is centered around numerical Wingsuit Equations solver, Flight Library which allows you manage pilots, flight modes, and mountains, and Unit Library that handles unit conversions. The software development kit will be coming in the near future allowing programmers write their own modules.

Currently, 3 modules are included with the installation:

Wingsuit Equations

Shows derivation of Wingsuit Equations and solves them numerically.

Wingsuit Equations are differential equations of motion governing wingsuit flight dynamics in two dimensions. Simple and beautiful, they allow for high precision simulation of wingsuit flight by knowing sustained velocity alone.

This module shows the derivation of Wingsuit Equations and explores various aspects of wingsuit flight: trajectory, velocity, acceleration, glide ratio, and other properties of the flight.

To solve WSE numerically, the 4th-order Runge-Kutta method with integration step of 0.1s is used. Solving WSE is handled by Wingsuit.Equations.dll .NET class library which you can freely use for your own Wingsuit Studio modules and other projects.

L/D Calculator

Calculates average L/D from BASE jump distance, height and time using Wingsuit Equations.

L/D Calculator is the most consistent and accurate way of estimating your L/D from a BASE jump. To use it, you need to measure distance, height, and time by using GPS or by wearing a video camera and passing close to a topographic feature which you can measure on topo maps. Note that the flight must be straight, no turns.

L/D Calculator samples various flight modes (flight mode is a combination of horizontal and vertical sustained speeds) and solves Wingsuit Equations for the duration of your flight (in assumption of constant flight mode) until it finds a mode that results in the closest match with the actual distance and altitude used on your jump.

L/D Calculator first uses “Hill Climbing” method of finding the solution, with a random seed between 0 and 150mph or 250km/h on the velocity grid. The step is gradually reduced until an accurate enough solution is found. This is a fast method, but sometimes it fails to find the best fit. If this happens, brutal force method is used which samples every node on the velocity grid and gradually reduces the step until satisfactory match is found.

Note that L/D Calculator normalizes sustained speeds to sea level and standard temperature.

Exit altitude and exit temperature have virtually no effect on the calculated L/D, but they do affect sustained speed. If your launch is very strong, estimate your launch speed and use it in calculation, as it affects calculated L/D.

The old technique of estimating L/D by subtracting some altitude used to start to fly from the available altitude and dividing the distance by this altitude gives inconsistent results, as the higher or the lower the mountain, the lower or the higher the contribution from the ‘starting to fly’ portion of the flight would be.

Using L/D Calculator for flights of various degree of performance and in different wingsuits allows you to build polar curves (collections of flight modes) which can be used in other modules.

World BASE Race

Helps you choose optimal flight mode for flying the World BASE Race (Romsdalen, Norway) in shortest time possible.

While there is no substitute for experience to win the World BASE Race in Romsdalen, Norway, the different modes of flying are too many to explore in limited time, and this is where World BASE Race module comes to help.

This is a tool that helps you answer questions like these:

– Do I need the highest L/D suit to win?
– Is it better to do a steep dive to get more speed, or to start flying as soon as possible?
– Is large, floaty suit or small, speedy suit better for the purpose?
– Will losing or gaining weight (or using extra weights) help me shorten the time?
– Do I stand any chance in a fast tracking suit?

The module uses Wingsuit Equations to simulate flights of two pilots based on their flight modes.

If this module does help you win the World BASE Race, send me a case of your favorite beer! 😉

Also, Wingsuit Studio includes several sample pilots. Pilot is a collection of flight modes, and flight mode is a combination of sustained horizontal and vertical speeds normalized to sea level and normal temperature that characterizes wingsuit flight dynamics for specific pilot in specific suit at certain body position and angle of attack. These sample pilots will get you started, and you create your own pilots based on GPS data of your flights. Pilot files can easily be exchanged between users and imported into the Studio.

Wingsuit Studio (Windows only) can be downloaded here:

Wingsuit Studio

Stay tuned, with a beer in your hand, for more pure fucking magic! Wink


Found on

Leave a Reply